H-Bond Self-Assembly: Folding versus Duplex Formation
نویسندگان
چکیده
منابع مشابه
H-Bond Self-Assembly: Folding versus Duplex Formation
Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observ...
متن کاملProtein folding guides disulfide bond formation.
The Anfinsen principle that the protein sequence uniquely determines its structure is based on experiments on oxidative refolding of a protein with disulfide bonds. The problem of how protein folding drives disulfide bond formation is poorly understood. Here, we have solved this long-standing problem by creating a general method for implementing the chemistry of disulfide bond formation and rup...
متن کاملDisulfide bond formation during the folding of influenza virus hemagglutinin
To study the importance of individual sulfhydryl residues during the folding and assembly in vivo of influenza virus hemagglutinin (HA), we have constructed and expressed a series of mutant HA proteins in which cysteines involved in three disulfide bonds have been substituted by serine residues. Investigations of the structure and intracellular transport of the mutant proteins indicate that (a)...
متن کاملSelf-Assembly and Pattern Formation
Pattern formation on micrometer and nanometer length scales has direct technological application and is of fundamental interest. These patterns can be achieved using sophisticated lithography techniques, but soft materials such as polymers can self-assemble into regular patterns by merely changing e.g. the temperature of the system. Our work on self-assembly and pattern formation has focused on...
متن کاملUltrafast hydration dynamics in melittin folding and aggregation: helix formation and tetramer self-assembly.
Melittin, an amphipathic peptide from honeybee venom, consists of 26 amino acid residues and adopts different conformations from a random coil, to an alpha-helix, and to a self-assembled tetramer under certain aqueous environments. We report here our systematic studies of the hydration dynamics in these conformations using single intrinsic tryptophan (W19) as a molecular probe. With femtosecond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2017
ISSN: 0002-7863,1520-5126
DOI: 10.1021/jacs.7b01357